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Basic setting

Let G be a Lie group.

Let [ be a lattice In G.

Set X =\G ={lg : ge G} — our homogeneous space.

Let u be a left Haar measure on G; then u induces a G-invariant measure on
[\G which we also call “u". From now on we assume that w is normalized so

that u(M\G) = 1.

— see |Problem 2




Example: G = RY, I = L, a lattice in RY.

Thatis: L ={cVi+---+C4Vy : C, ..., cq € Z} for some vy, . . ., vy e RY
which form a basis of RY.
[ ) T [ )

Then X =MN\G = L\R? = RY/L, a torus.

u = normalized Lebesgue measure.



Example: G = SL,(R) and I a lattice in G with —/ € ', and without elliptic
elements.
Recall that SL>(IR) acts by isometries on the hyperbolic upper half space:
\/dx2 + dy?

" .

H={z=x+4+1iy : x,yeR, y >0}, withmetric ds =

a b _az+b

cd)? = cz+d
Now M\H is a hyperbolic surface of finite area, and | X = N'\G = T}("\H) |
viz., '\G can be identified with the unit tangent bundle of M"\H.

— see |Problem 1




For G = SL2<R), [ = SL2<Z)

X =TM\G = THMH), where N H looks as follows:




Example: G = SLy(R) and ' = SL4(Z) (d = 2). Then

X =T\G = SL4(Z)\SL4(R) = [the space of lattices in R’ of covolume 1].

dentification map: g — Z9%g = {Xg : Xe Z9} (ge G).

X Is noncompact.

Mabhler’s criterion: A sequence ['g;,[go, ... In T\G diverges
(g leaves every compact subset of N\G)
if and only If

m(Fg;) := min{|Xgj|| : Xe Z\{0}} —0 asj— .



Next: DYNAMICS on the homogeneous space X =[\G
Let (hy)ier be a I-parameter subgroup of G.

(That is, the map t — h; is a Lie group homomorphism. Recall that in this
situation there exists a unique element X € g such that h; = exp(tX), Vt € R.)

Objective: Understand properties of the “homogeneous flow”
d:(lg) :=Tgh; on X =T\G.
(Note that this flow preserves w.)




FLOWS (a basic notion in dynamical systems)

A flowonaset Xisamap ®: R x X — X such that
Vxe X, t,seR: d(0,x) =x and D(s,P(t,x)) = P(s + t, x).

We will write | ®+(x) |in place of ®(t, x). Then:

Vxe X, t,seR: Dp(x) = x and  Pg(Py(x)) = Peyt(X).

Note: For each t € R, ®; is a bijection X — X.

Compare with a (bijective) map T : X — X; then study 7°" : X — X for
n € Z, — for a flow we take instead “ne R".

Usually X has extra structure which ® preserves.
Ex: X a topological space, and ® : R x X — X continuous.

Ex: X a C¥® manifold, and ® : R x X — X i1s C”,



We say that the flow ® preserves a measure u € P(X) if 4. (u) = w for
all t e R (thatis, u(®_+(A)) = u(A) for every measurable A = X).

In this situation, u is ergodic if, for every measurable subset A < X satisfying
d:(A) = A, VteR, one has u(A) =0 or 1.

Birkhoff's Pointwise Ergodic Theorem for flows: Let (X, B, i) be a prob-
ability space; and let ® : R x X — X be a measurable flow preserving . Let
f : X — C be measurable and {, |f| du < 0. Set

AL (x) %L Fux)) dt (T >0)

Then the function A? converges u-almost everywhere, and also in L*-norm,
to a function F : X — C with F o ®; = F (Vt € R).



DYNAMICS on the homogeneous space X =I\G

Let (hy)ier be a I-parameter subgroup of G.

Objective: Understand properties of the “homogeneous flow”
di(Mg) :=Tgh; on X =T\G.
(Note that this flow preserves u.)

Examples: Let G = SL,(R).

t/2
Let a; = (eo e—ot/z)3 ®,(Ig) := [ga; is the geodesic flow on T1(TMH).

Let u; = ((1) i) ®,(Fg) := Igu, is the horocycle flow on T1(IMH).

— see |Problem 1
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For general N\G and (h;), the behavior of the flow ®+('g) = "gh; can differ
hugely, depending on (h;) (and on G)! Two important, very different, cases:

(h¢) unipotent & [ Adp, is unipotent (Vt € R) ]

Examples: The horocycle flow: G = SLy(R) and u; = ((1) i)

*
*
——

More generally, G = SL4(R) and any u; =

Also: G = RY (= X a torus, and all homogeneous flows are linear).
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(h) (R-)diagonal | <= Ad, is diagonalizable over R (V€ R), and G is 2 ]
) (R-

simple Lie group with finite center.

((Or more generally, G semisimple + extra conditions.))

t/2
Examples: The geodesic flow: G = SL,(R) and a; = (eo e—Ot/2)'

eclt o ... 0
Cot
More generally, G = SL4(R) and a; = O ° N O
0 o ... ecdt
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Summary of properties
Diagonal flows are “chaotic”:

— they are Bernoull,

have positive entropy,

non-zero Lyapunov exponents (= are partially hyperbolic),
and are exponentially mixing.

Unipotent behave in a much more controlled way:

— they have entropy zero (= they are “deterministic”),
they have all Lyapunov exponents = 0,

they are at most polynomially mixing (see Problem 4(c)),
and they exhibit measure ridigity (Ratner’'s Theorem).
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Immediate consequences of the definitions (unipotent/diagonal)

Note, for any g € G and X € g:
[g(exp X)h: = [ghyexp (Ad;tl(X)).

- ra
i | @fexp X)h,
lMs ¥
Therefore,
unipotent polynomial _ ) i
(he) S . = . divergence of trajectories.
diagonal exponential

— see |Problem 4
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More concretely, and explicitly, for G = SL,(R)

. eV/2 0 1 x N 10
Write a, = ( 0 ey/2>' Uy = (O 1), U, = (Z 1).

Then (x,y, z) — uxa,l,, R* — G, is a C* parametrization of

G, = {(i 3) eG d>0}. (Note also (0,0, 0) — (

Key relations: | uya; = arly.—t | and | U,a; = apll, et

It follows that g (uxayfiz) ar = [ga; (uxe_tayﬁzet).
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Mixing (a basic notion in dynamical systems)

Definition: A measure-preserving flow () on a probability space (X, u) is
said to be (strongly) mixing if

(i) forany A, B = X, lim. u(P(A) n B) = u(A)u(B),

or equivalently

(i) VA, hoe L2(X, ) limeo(fio @1, H) = u(h)u(h).

(Proof of (i)<(ii): “Simple functions are dense in L2".)

Note: mixing = ergodic
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Diagonal flows are exponentially mixing

Theorem (work by many people):

Let G be a simple Lie group with finite center, and let [ be a lattice in G.
(Example: G = SL4(R), " any lattice in G.)

Set X =T\G, and let (a¢) be a non-trivial, R-diagonal one-parameter sub-
group of G. Then 3¢ € Z*, C > 0, n > 0 such that

Vf,fhe CA(X), t =0:

Jx fi(xa_t)fh(x) du(x) — p(A)u(h)| < C - Sap(fi)Sae(fa) - ™.

(On the other hand, a unipotent flow can be at most polynomially mixing
— see Problem 4(c).)
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Application: Equidistribution of expanding horocycles in SL;,(R)
(“Margulis’ thickening technique”)

Theorem: Let G = SLy(R), let " be a lattice in G, and set X = ['\G. Then
for any po € X and f € C(X):

1

f(pousas) ds — u(f)  as t — —oo.
0

Remarks:

e For pp =1 (1)(1) and [ with (1)1 el:

Equidistribution of long closed horocycles,

very classical (Selberg, Zagier, Sarnak, Hejhal, ...)

e the theorem Is proved using the fact that
(a:) is mixing. Using exponential mixing,
one also obtains an error term.

A LONG CLOSED HOROCYCLE
- picture from
www-users.math.umn.eduf~ hejhalf
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Outline of proof:  (See |Problem 5 for details.)

Naively, we want to apply the fact that (a;) is mixing, with

fr=Ff and f;= [ 1-dim Lebesgue measure along {pous : 0 < s < 1} ]

However, that f; Is not permitted!

To fix up, Instead take f; to be the characteristic function of
Hp, e == | e-neighbourhood of {pous : 0 < s < 1}].

Using the fact that (a;) is mixing, we get:

im L f(xa_0)h(x) du(x) = u(f)u(h)

t——o0

t—=—00 :L’J(Hpo,s)

| 1
- Am u(f) L h(x)fa(xar) du(x) = u(f)
= im L fr(xar) du(x) = u(h).
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In the last integral, use the fact that H,, ¢ a; Is contained in an e-neighbourhood
of

{pousar = 0<s <1},
because of
Pous (ay0y) ar = pousar (ayle—t).

(Recall t - —00.)

T herefore,
1

1
- f>(xas) d xwffpusa ds,
w(Hpy ) JHpo,g 2(xa) dulx) 0 2(Potis2)

and we are done. O
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Measure rigidity for unipotent flows (Ratner)

Theorem (Ratner, 1991): Let G be a Lie group and I a lattice in G, and
let ®,(I'g) = Igu; be a unipotent flow on X = '\G. Then every

d4-invariant ergodic v € P(X)
is “homogeneous” (< “algebraic”),

meaning that there exist x € X and a closed connected subgroup S < G such
that {u;} € S, xS = {Py(x) : te R}, v(xS) =1 and v is S-invariant.

In the above situation, 1t follows that v is the unique S-invariant probability
measure on xS; and also that ®g(x) is equidistributed in xS.

Also, x5 is a closed regular submanifold of X. Explicitly, take g € G such that
x =1[g, and set S = gSg !, Fl=lnSand X = F\S Then T is a lattice in

S, and the map
J:X—>X,  JI35):=T5g (5€85)

Is a C* diffeomorphism of X onto xS, mapping the S-invariant measure of X
onto v.



