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Basic setting

Let G be a Lie group.

Let Γ be a lattice in G.

Set X “ ΓzG “ tΓg : g P Gu — our homogeneous space.

Let µ be a left Haar measure on G; then µ induces a G-invariant measure on
ΓzG which we also call “µ”. From now on we assume that µ is normalized so
that µpΓzGq “ 1.

– see Problem 2
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Example: G “ Rd , Γ “ L, a lattice in Rd .

That is: L “ tc1~v1 ` ¨ ¨ ¨ ` cd~vd : c1, . . . , cd P Zu for some ~v1, . . . , ~vd P Rd

which form a basis of Rd .

Then X “ ΓzG “ LzRd “ Rd{L, a torus.

µ “ normalized Lebesgue measure.
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Example: G “ SL2pRq and Γ a lattice in G with ´I P Γ, and without elliptic
elements.

Recall that SL2pRq acts by isometries on the hyperbolic upper half space:

H “ tz “ x ` iy : x, y P R, y ą 0u, with metric ds “

a
dx2 ` dy 2

y
.

ˆ
a b

c d

˙
pzq “

az ` b

cz ` d
.

Now ΓzH is a hyperbolic surface of finite area, and X “ ΓzG “ T 1pΓzHq ,

viz., ΓzG can be identified with the unit tangent bundle of ΓzH.

– see Problem 1



For G “ SL2pRq, Γ “ SL2pZq

X “ ΓzG “ T 1pΓzHq, where ΓzH looks as follows:

−1 1−0.5 0 0.5
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Example: G “ SLdpRq and Γ “ SLdpZq (d ě 2). Then

X “ ΓzG “ SLdpZqzSLdpRq “ [the space of lattices in Rd of covolume 1].

Identification map: Γg ÞÑ Zdg “ t~xg : ~x P Zdu pg P Gq.

X is noncompact.

Mahler’s criterion: A sequence Γg1, Γg2, . . . in ΓzG diverges

(
def

ðñ leaves every compact subset of ΓzG)

if and only if

mpΓgjq :“ mint}~xgj} : ~x P Zdzt~0uu Ñ 0 as j Ñ 8.
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Next: DYNAMICS on the homogeneous space X “ ΓzG

Let phtqtPR be a 1-parameter subgroup of G.

(That is, the map t ÞÑ ht is a Lie group homomorphism. Recall that in this
situation there exists a unique element X P g such that ht “ expptXq, @t P R.)

Objective: Understand properties of the “homogeneous flow”

ΦtpΓgq :“ Γght on X “ ΓzG.

(Note that this flow preserves µ.)
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FLOWS (a basic notion in dynamical systems)

A flow on a set X is a map Φ : RˆX Ñ X such that

@x P X, t, s P R : Φp0, xq “ x and Φps,Φpt, xqq “ Φps ` t, xq.

We will write Φtpxq in place of Φpt, xq. Then:

@x P X, t, s P R : Φ0pxq “ x and ΦspΦtpxqq “ Φs`tpxq.

Note: For each t P R, Φt is a bijection X
„
Ñ X.

Compare with a (bijective) map T : X Ñ X; then study T ˝n : X Ñ X for
n P Z — for a flow we take instead “n P R”.

Usually X has extra structure which Φ preserves.

Ex: X a topological space, and Φ : RˆX Ñ X continuous.

Ex: X a C8 manifold, and Φ : RˆX Ñ X is C8.
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We say that the flow Φ preserves a measure µ P P pXq if Φt˚pµq “ µ for
all t P R (that is, µpΦ´tpAqq “ µpAq for every measurable A Ă X).

In this situation, µ is ergodic if, for every measurable subset A Ă X satisfying
ΦtpAq “ A, @t P R, one has µpAq “ 0 or 1.

Birkhoff’s Pointwise Ergodic Theorem for flows: Let pX,B, µq be a prob-
ability space; and let Φ : Rˆ X Ñ X be a measurable flow preserving µ. Let
f : X Ñ C be measurable and

ş
X

|f | dµ ă 8. Set

AfT pxq :“
1

T

ż T

0

f pΦtpxqq dt pT ą 0q.

Then the function AfT converges µ-almost everywhere, and also in L
1-norm,

to a function F : X Ñ C with F ˝Φt ” F (@t P R).
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DYNAMICS on the homogeneous space X “ ΓzG

Let phtqtPR be a 1-parameter subgroup of G.

Objective: Understand properties of the “homogeneous flow”

ΦtpΓgq :“ Γght on X “ ΓzG.

(Note that this flow preserves µ.)

Examples: Let G “ SL2pRq.

Let at ”

ˆ
et{2 0

0 e´t{2

˙
: ΦtpΓgq :“ Γgat is the geodesic flow on T

1pΓzHq.

Let ut ”

ˆ
1 t
0 1

˙
: ΦtpΓgq :“ Γgut is the horocycle flow on T

1pΓzHq.

– see Problem 1
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For general ΓzG and phtq, the behavior of the flow ΦtpΓgq “ Γght can differ
hugely, depending on phtq (and on G)! Two important, very different, cases:

phtq unipotent
def

ðñ
”
Adht is unipotent (@t P R)

ı
.

Examples: The horocycle flow: G “ SL2pRq and ut ”

ˆ
1 t
0 1

˙
.

More generally, G “ SLdpRq and any ut ”

¨
˚̊
˚̊
˝

1 ˚ ˚ ¨ ¨ ¨ ˚
0 1 ˚ ¨ ¨ ¨ ˚
0 0 1 ˚
... ... . . . ...
0 0 ¨ ¨ ¨ 0 1

˛
‹‹‹‹‚
.

Also: G “ Rd (ñ X a torus, and all homogeneous flows are linear).
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phtq (R-)diagonal
def

ðñ

«
Adht is diagonalizable over R (@t P R), and G is a

simple Lie group with finite center.

ff

((Or more generally, G semisimple + extra conditions.))

Examples: The geodesic flow: G “ SL2pRq and at ”

ˆ
et{2 0

0 e´t{2

˙
.

More generally, G “ SLdpRq and at ”

¨
˚̊
˝

ec1t 0 ¨ ¨ ¨ 0
0 ec2t 0
... . . . ...
0 0 ¨ ¨ ¨ ecd t

˛
‹‹‚.
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Summary of properties

Diagonal flows are “chaotic”:

— they are Bernoulli,

have positive entropy,

non-zero Lyapunov exponents (ñ are partially hyperbolic),

and are exponentially mixing.

Unipotent behave in a much more controlled way:

— they have entropy zero (ñ they are “deterministic”),

they have all Lyapunov exponents “ 0,

they are at most polynomially mixing (see Problem 4(c)),

and they exhibit measure ridigity (Ratner’s Theorem).
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Immediate consequences of the definitions (unipotent/diagonal)

Note, for any g P G and X P g:

ΓgpexpXqht “ Γght exp
´
Ad´1
ht

pXq
¯
.

Therefore,

phtq

"
unipotent

diagonal

*
ñ

"
polynomial

exponential

*
divergence of trajectories.

– see Problem 4
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More concretely, and explicitly, for G “ SL2pRq

Write ay “

ˆ
ey{2 0

0 e´y{2

˙
, ux “

ˆ
1 x
0 1

˙
, ruz “

ˆ
1 0
z 1

˙
.

Then xx, y , zy ÞÑ uxay ruz , R3 Ñ G, is a C8 parametrization of

G` :“

"ˆ
a b

c d

˙
P G : d ą 0

*
. (Note also x0, 0, 0y ÞÑ

ˆ
1 0
0 1

˙
.)

Key relations: uxat “ atuxe´t and ruzat “ atuzet

It follows that Γg
´
uxay ruz

¯
at ” Γg at

´
uxe´tay ruzet

¯
.
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Mixing (a basic notion in dynamical systems)

Definition: A measure-preserving flow pΦtq on a probability space pX,µq is
said to be (strongly) mixing if

(i) for any A,B Ă X, limtÑ8 µ
`
ΦtpAq X B

˘
“ µpAqµpBq,

¨ ¨ ¨ Ñ

or equivalently

(ii) @f1, f2, P L
2pX,µq: limtÑ8xf1 ˝ Φ´1

t , f2y “ µpf1qµpf2q.

(Proof of (i)ô(ii): “Simple functions are dense in L2”.)

Note: mixing ñ ergodic
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Diagonal flows are exponentially mixing

Theorem (work by many people):

Let G be a simple Lie group with finite center, and let Γ be a lattice in G.

(Example: G “ SLdpRq, Γ any lattice in G.)

Set X “ ΓzG, and let patq be a non-trivial, R-diagonal one-parameter sub-
group of G. Then Dℓ P Z`, C ą 0, η ą 0 such that

@f1, f2 P C8
c pXq, t ě 0:

ˇ̌
ˇ̌
ż

X

f1pxa´tqf2pxq dµpxq ´ µpf1qµpf2q

ˇ̌
ˇ̌ ď C ¨ S2,ℓpf1qS2,ℓpf2q ¨ e´ηt.

(On the other hand, a unipotent flow can be at most polynomially mixing

— see Problem 4(c).)
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Application: Equidistribution of expanding horocycles in SL2pRq
(“Margulis’ thickening technique”)

Theorem: Let G “ SL2pRq, let Γ be a lattice in G, and set X “ ΓzG. Then
for any p0 P X and f P CcpXq:

ż
1

0

f pp0usatq ds Ñ µpf q as t Ñ ´8.

Remarks:

‚ For p0 “ Γ

ˆ
1 0
0 1

˙
and Γ with

ˆ
1 1
0 1

˙
P Γ:

Equidistribution of long closed horocycles,

very classical (Selberg, Zagier, Sarnak, Hejhal, ...)

‚ the theorem is proved using the fact that

patq is mixing. Using exponential mixing,

one also obtains an error term.
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Outline of proof: (See Problem 5 for details.)

Naively, we want to apply the fact that patq is mixing, with

f2 ” f and f1 “
“
1-dim Lebesgue measure along tp0us : 0 ď s ď 1u

‰
.

However, that f1 is not permitted!

To fix up, instead take f1 to be the characteristic function of

Hp0,ε :“
“
ε-neighbourhood of

 
p0us : 0 ď s ď 1

(‰
.

Using the fact that patq is mixing, we get:

lim
tÑ´8

ż

X

f1pxa´tqf2pxq dµpxq “ µpf1qµpf2q

ñ lim
tÑ´8

1

µpf1q

ż

X

f1pxqf2pxatq dµpxq “ µpf2q

ñ lim
tÑ´8

1

µpHp0,εq

ż

Hp0,ε

f2pxatq dµpxq “ µpf2q.

19



In the last integral, use the fact that Hp0,ε at is contained in an ε-neighbourhood
of

 
p0usat : 0 ď s ď 1

(
,

because of

p0us
`
ay ruz

˘
at “ p0usat

`
ay ruze´t

˘
.

(Recall t Ñ ´8.)

Therefore,

1

µpHp0,εq

ż

Hp0,ε

f2pxatq dµpxq «

ż
1

0

f2pp0usatq ds,

and we are done. ˝
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Measure rigidity for unipotent flows (Ratner)

Theorem (Ratner, 1991): Let G be a Lie group and Γ a lattice in G, and

let ΦtpΓgq “ Γgut be a unipotent flow on X “ ΓzG. Then every

Φt-invariant ergodic ν P P pXq

is “homogeneous” (ô “algebraic”),

meaning that there exist x P X and a closed connected subgroup S Ă G such

that tutu Ă S, xS “ tΦtpxq : t P Ru, νpxSq “ 1 and ν is S-invariant.

In the above situation, it follows that ν is the unique S-invariant probability
measure on xS; and also that ΦRpxq is equidistributed in xS.

Also, xS is a closed regular submanifold of X. Explicitly, take g P G such that
x “ Γg, and set rS “ gSg´1, rΓ “ ΓX rS and rX “ rΓzrS. Then rΓ is a lattice in
rS, and the map

J : rX Ñ X, JprΓrsq :“ Γrsg prs P rSq

is a C8 diffeomorphism of rX onto xS, mapping the rS-invariant measure of rX
onto ν.


