Diagonal and unipotent flows

Andreas Strömbergsson Uppsala University http://www.math.uu.se/~astrombe

Sarajevo, August 2022

Basic setting

Let G be a Lie group.

Let Γ be a lattice in G.

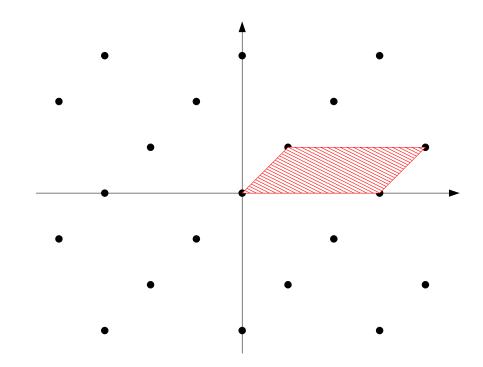
Set $X = \Gamma \setminus G = \{ \Gamma g : g \in G \}$ — our **homogeneous space**.

Let μ be a left Haar measure on G; then μ induces a G-invariant measure on $\Gamma \setminus G$ which we also call " μ ". From now on we assume that μ is normalized so that $\mu(\Gamma \setminus G) = 1$.

– see Problem 2

Example: $G = \mathbb{R}^d$, $\Gamma = L$, a lattice in \mathbb{R}^d .

That is: $L = \{c_1 \vec{v_1} + \cdots + c_d \vec{v_d} : c_1, \ldots, c_d \in \mathbb{Z}\}$ for some $\vec{v_1}, \ldots, \vec{v_d} \in \mathbb{R}^d$ which form a basis of \mathbb{R}^d .



Then $X = \Gamma \backslash G = L \backslash \mathbb{R}^d = \mathbb{R}^d / L$, a *torus*.

 μ = normalized Lebesgue measure.

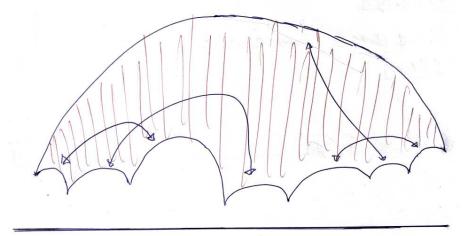
Example: $G = SL_2(\mathbb{R})$ and Γ a lattice in G with $-I \in \Gamma$, and without elliptic elements.

Recall that $SL_2(\mathbb{R})$ acts by isometries on the hyperbolic upper half space:

 $\mathbf{H} = \{ z = x + iy : x, y \in \mathbb{R}, y > 0 \}, \text{ with metric } ds = \frac{\sqrt{dx^2 + dy^2}}{y}.$

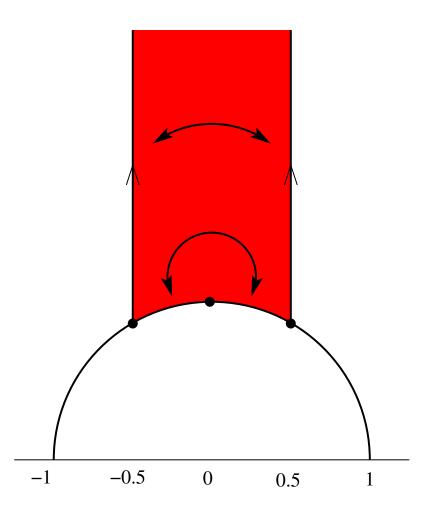
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} (z) = \frac{az+b}{cz+d}.$$

Now $\Gamma \setminus \mathbf{H}$ is a hyperbolic surface of finite area, and $X = \Gamma \setminus G = T^1(\Gamma \setminus \mathbf{H})$, viz., $\Gamma \setminus G$ can be identified with the unit tangent bundle of $\Gamma \setminus \mathbf{H}$.



For
$$G = SL_2(\mathbb{R})$$
, $\Gamma = SL_2(\mathbb{Z})$

 $X = \Gamma \setminus G = T^1(\Gamma \setminus \mathbf{H})$, where $\Gamma \setminus \mathbf{H}$ looks as follows:



Example: $G = SL_d(\mathbb{R})$ and $\Gamma = SL_d(\mathbb{Z})$ ($d \ge 2$). Then

 $X = \Gamma \setminus G = SL_d(\mathbb{Z}) \setminus SL_d(\mathbb{R}) =$ [the space of lattices in \mathbb{R}^d of covolume 1].

Identification map: $\Gamma g \mapsto \mathbb{Z}^d g = \{ \vec{x}g : \vec{x} \in \mathbb{Z}^d \} \quad (g \in G).$

X is **noncompact.**

Mahler's criterion: A sequence $\Gamma g_1, \Gamma g_2, \ldots$ in $\Gamma \setminus G$ diverges ($\stackrel{\text{def}}{\longleftrightarrow}$ leaves every compact subset of $\Gamma \setminus G$) if and only if

 $m(\Gamma g_j) := \min\{\|\vec{x}g_j\| : \vec{x} \in \mathbb{Z}^d \setminus \{\vec{0}\}\} \to 0 \text{ as } j \to \infty.$

Next: DYNAMICS on the homogeneous space $X = \Gamma \setminus G$

Let $(h_t)_{t \in \mathbb{R}}$ be a 1-parameter subgroup of G.

(That is, the map $t \mapsto h_t$ is a Lie group homomorphism. Recall that in this situation there exists a unique element $X \in \mathfrak{g}$ such that $h_t = \exp(tX)$, $\forall t \in \mathbb{R}$.)

Objective: Understand properties of the "homogeneous flow" $\Phi_t(\Gamma g) := \Gamma g h_t$ on $X = \Gamma \backslash G$. (Note that this flow preserves μ .)

FLOWS (a basic notion in dynamical systems)

A flow on a set X is a map $\Phi : \mathbb{R} \times X \to X$ such that $\forall x \in X, t, s \in \mathbb{R} : \Phi(0, x) = x \text{ and } \Phi(s, \Phi(t, x)) = \Phi(s + t, x).$ We will write $\Phi_t(x)$ in place of $\Phi(t, x)$. Then: $\forall x \in X, t, s \in \mathbb{R} : \Phi_0(x) = x \text{ and } \Phi_s(\Phi_t(x)) = \Phi_{s+t}(x).$

Note: For each $t \in \mathbb{R}$, Φ_t is a bijection $X \xrightarrow{\sim} X$.

Compare with a (bijective) **map** $T : X \to X$; then study $T^{\circ n} : X \to X$ for $n \in \mathbb{Z}$ — for a **flow** we take instead " $n \in \mathbb{R}$ ".

Usually X has extra structure which Φ preserves. Ex: X a topological space, and $\Phi : \mathbb{R} \times X \to X$ continuous. Ex: X a C^{∞} manifold, and $\Phi : \mathbb{R} \times X \to X$ is C^{∞} . We say that the flow Φ **preserves a measure** $\mu \in P(X)$ if $\Phi_{t*}(\mu) = \mu$ for all $t \in \mathbb{R}$ (that is, $\mu(\Phi_{-t}(A)) = \mu(A)$ for every measurable $A \subset X$).

In this situation, μ is ergodic if, for every measurable subset $A \subset X$ satisfying $\Phi_t(A) = A$, $\forall t \in \mathbb{R}$, one has $\mu(A) = 0$ or 1.

Birkhoff's **Pointwise Ergodic Theorem** for flows: Let (X, \mathcal{B}, μ) be a probability space; and let $\Phi : \mathbb{R} \times X \to X$ be a measurable flow preserving μ . Let $f : X \to \mathbb{C}$ be measurable and $\int_X |f| d\mu < \infty$. Set

$$A_T^f(x) := \frac{1}{T} \int_0^T f(\Phi_t(x)) dt$$
 (T > 0).

Then the function A_T^f converges μ -almost everywhere, and also in L^1 -norm, to a function $F : X \to \mathbb{C}$ with $F \circ \Phi_t \equiv F$ ($\forall t \in \mathbb{R}$).

DYNAMICS on the homogeneous space $X = \Gamma \setminus G$

Let $(h_t)_{t \in \mathbb{R}}$ be a 1-parameter subgroup of G.

Objective: Understand properties of the "homogeneous flow"

$$\Phi_t(\Gamma g) := \Gamma g h_t \quad \text{on } X = \Gamma \backslash G.$$

(Note that this flow preserves μ .)

Examples: Let $G = SL_2(\mathbb{R})$.

Let
$$a_t \equiv \begin{pmatrix} e^{t/2} & 0 \\ 0 & e^{-t/2} \end{pmatrix}$$
: $\Phi_t(\Gamma g) := \Gamma g a_t$ is the **geodesic flow** on $T^1(\Gamma \setminus \mathbf{H})$.

Let $u_t \equiv \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}$: $\Phi_t(\Gamma g) := \Gamma g u_t$ is the **horocycle flow** on $T^1(\Gamma \setminus \mathbf{H})$. - see Problem 1 For general $\Gamma \setminus G$ and (h_t) , the behavior of the flow $\Phi_t(\Gamma g) = \Gamma g h_t$ can differ hugely, depending on (h_t) (and on G)! Two important, very different, cases:

$$(h_t)$$
 unipotent $\left| \stackrel{\text{def}}{\longleftrightarrow} \right[\operatorname{Ad}_{h_t} \text{ is unipotent } (\forall t \in \mathbb{R}) \right].$

Examples: The horocycle flow: $G = SL_2(\mathbb{R})$ and $u_t \equiv \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}$. More generally, $G = SL_d(\mathbb{R})$ and any $u_t \equiv \begin{pmatrix} 1 & * & \cdots & * \\ 0 & 1 & * & \cdots & * \\ 0 & 0 & 1 & & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & 1 \end{pmatrix}$.

Also: $G = \mathbb{R}^d (\Rightarrow X \text{ a torus, and all homogeneous flows are$ *linear*).

$$(h_t)$$
 (**R**-)diagonal $\stackrel{\text{def}}{\longleftarrow}$

 $\stackrel{\text{def}}{\Rightarrow} \begin{array}{|c|c|} \mathsf{Ad}_{h_t} \text{ is diagonalizable over } \mathbb{R} \ (\forall t \in \mathbb{R}), \text{ and } G \text{ is a} \\ \hline simple \text{ Lie group with finite center.} \end{array}$

((Or more generally, *G semisimple* + extra conditions.))

Examples: The geodesic flow: $G = SL_2(\mathbb{R})$ and $a_t \equiv \begin{pmatrix} e^{t/2} & 0 \\ 0 & e^{-t/2} \end{pmatrix}$. More generally, $G = SL_d(\mathbb{R})$ and $a_t \equiv \begin{pmatrix} e^{c_1t} & 0 & \cdots & 0 \\ 0 & e^{c_2t} & 0 \\ \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & e^{c_dt} \end{pmatrix}$.

Summary of properties

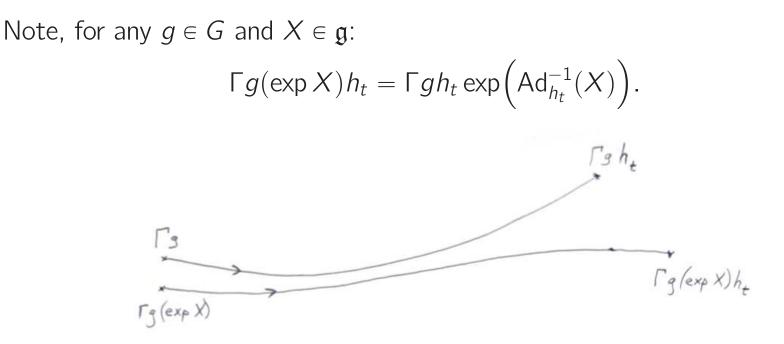
Diagonal flows are "chaotic":

— they are *Bernoulli*, have *positive entropy*, *non-zero Lyapunov exponents* (\Rightarrow are *partially hyperbolic*), and are *exponentially mixing*.

Unipotent behave in a much more controlled way:

— they have entropy zero (\Rightarrow they are "deterministic"), they have all Lyapunov exponents = 0, they are at most polynomially mixing (see Problem 4(c)), and they exhibit measure ridigity (Ratner's Theorem).

Immediate consequences of the definitions (unipotent/diagonal)



Therefore,

$$(h_t) \begin{cases} \text{unipotent} \\ \text{diagonal} \end{cases} \Rightarrow \begin{cases} \text{polynomial} \\ \text{exponential} \end{cases} \\ \text{divergence of trajectories.} \\ - \text{see} \boxed{\text{Problem 4}} \end{cases}$$

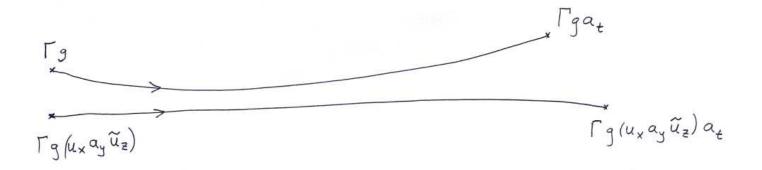
More concretely, and explicitly, for $G = SL_2(\mathbb{R})$

Write
$$a_y = \begin{pmatrix} e^{y/2} & 0 \\ 0 & e^{-y/2} \end{pmatrix}$$
, $u_x = \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}$, $\widetilde{u}_z = \begin{pmatrix} 1 & 0 \\ z & 1 \end{pmatrix}$.

Then $\langle x, y, z \rangle \mapsto u_x a_y \widetilde{u}_z, \mathbb{R}^3 \to G$, is a C^{∞} parametrization of $G_+ := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G : d > 0 \right\}.$ (Note also $\langle 0, 0, 0 \rangle \mapsto \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$)

Key relations:
$$u_x a_t = a_t u_{xe^{-t}}$$
 and $\widetilde{u}_z a_t = a_t u_{ze^t}$

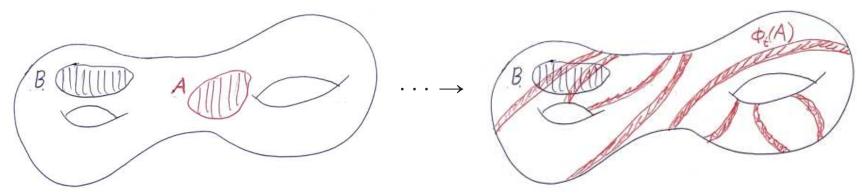
It follows that
$$\Gamma g\left(u_{x}a_{y}\widetilde{u}_{z}\right)a_{t} \equiv \Gamma g a_{t}\left(u_{xe^{-t}}a_{y}\widetilde{u}_{ze^{t}}\right).$$



Mixing (a basic notion in dynamical systems)

Definition: A measure-preserving flow (Φ_t) on a probability space (X, μ) is said to be **(strongly) mixing** if

(i) for any $A, B \subset X$, $\lim_{t\to\infty} \mu(\Phi_t(A) \cap B) = \mu(A)\mu(B)$,



or equivalently

(ii)
$$\forall f_1, f_2, \in L^2(X, \mu)$$
: $\lim_{t\to\infty} \langle f_1 \circ \Phi_t^{-1}, f_2 \rangle = \mu(f_1)\mu(f_2).$

(Proof of (i) \Leftrightarrow (ii): "Simple functions are dense in $L^{2"}$.)

Note: $mixing \Rightarrow ergodic$

Diagonal flows are exponentially mixing

Theorem (work by *many* people): Let *G* be a simple Lie group with finite center, and let Γ be a lattice in *G*. (Example: $G = SL_d(\mathbb{R})$, Γ any lattice in *G*.) Set $X = \Gamma \setminus G$, and let (a_t) be a non-trivial, \mathbb{R} -diagonal one-parameter subgroup of *G*. Then $\exists \ell \in \mathbb{Z}^+$, C > 0, $\eta > 0$ such that $\forall f_1, f_2 \in C_c^{\infty}(X), t \ge 0$: $\left| \int_X f_1(xa_{-t})f_2(x) d\mu(x) - \mu(f_1)\mu(f_2) \right| \le C \cdot S_{2,\ell}(f_1)S_{2,\ell}(f_2) \cdot e^{-\eta t}.$

(On the other hand, a unipotent flow can be at most polynomially mixing — see Problem 4(c).)

Application: Equidistribution of expanding horocycles in $SL_2(\mathbb{R})$ ("Margulis' thickening technique")

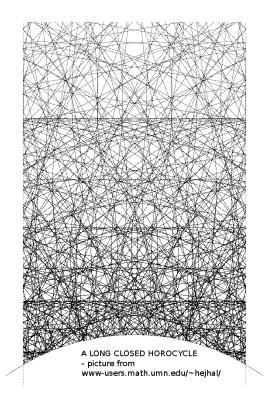
Theorem: Let $G = SL_2(\mathbb{R})$, let Γ be a lattice in G, and set $X = \Gamma \setminus G$. Then for any $p_0 \in X$ and $f \in C_c(X)$: $\int_0^1 f(p_0 u_s a_t) \, ds \to \mu(f) \quad \text{as } t \to -\infty.$

Remarks:

• For
$$p_0 = \Gamma \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 and Γ with $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \in \Gamma$:

Equidistribution of long closed horocycles, *very* classical (Selberg, Zagier, Sarnak, Hejhal, ...)

the theorem is proved using the fact that
(a_t) is mixing. Using exponential mixing,
one also obtains an error term.



Outline of proof: (See Problem 5 for details.)

Naively, we want to apply the fact that (a_t) is **mixing**, with

 $f_2 \equiv f$ and $f_1 = [$ 1-dim Lebesgue measure along $\{p_0 u_s : 0 \leq s \leq 1\}$].

However, that f_1 is not permitted!

To fix up, instead take f_1 to be the *characteristic function of*

$$H_{p_0,\varepsilon} := \left[\varepsilon \text{-neighbourhood of } \left\{ p_0 u_s : 0 \leqslant s \leqslant 1 \right\} \right].$$

Using the fact that (a_t) is **mixing**, we get:

$$\lim_{t \to -\infty} \int_X f_1(x a_{-t}) f_2(x) \, d\mu(x) = \mu(f_1) \mu(f_2)$$

$$\Rightarrow \qquad \lim_{t \to -\infty} \frac{1}{\mu(f_1)} \int_X f_1(x) f_2(xa_t) d\mu(x) = \mu(f_2)$$

$$\Rightarrow \qquad \lim_{t \to -\infty} \frac{1}{\mu(H_{p_0,\varepsilon})} \int_{H_{p_0,\varepsilon}} f_2(xa_t) \, d\mu(x) = \mu(f_2).$$

In the last integral, use the fact that $H_{p_0,\varepsilon} a_t$ is contained in an ε -neighbourhood of

$$ig\{p_0 u_s a_t : 0 \leqslant s \leqslant 1ig\}$$
,

because of

$$p_0 u_s \left(a_y \widetilde{u}_z \right) a_t = p_0 u_s a_t \left(a_y \widetilde{u}_{ze^{-t}} \right).$$

(Recall $t \to -\infty$.)

Therefore,

$$\frac{1}{\mu(H_{p_0,\varepsilon})}\int_{H_{p_0,\varepsilon}}f_2(xa_t)\,d\mu(x)\approx\int_0^1f_2(p_0u_sa_t)\,ds,$$

and we are done.

Measure rigidity for unipotent flows (Ratner)

Theorem (Ratner, 1991): Let *G* be a Lie group and Γ a lattice in *G*, and let $\Phi_t(\Gamma g) = \Gamma g u_t$ be a **unipotent** flow on $X = \Gamma \setminus G$. Then every Φ_t -invariant ergodic $\nu \in P(X)$ is **"homogeneous"** (\Leftrightarrow **"algebraic"**), meaning that there exist $x \in X$ and a closed connected subgroup $S \subset G$ such that $\{u_t\} \subset S, xS = \overline{\{\Phi_t(x) : t \in \mathbb{R}\}}, \nu(xS) = 1$ and ν is *S*-invariant.

In the above situation, it follows that ν is the *unique S*-invariant probability measure on *xS*; and also that $\Phi_{\mathbb{R}}(x)$ is *equidistributed* in *xS*.

Also, xS is a *closed regular submanifold* of X. Explicitly, take $g \in G$ such that $x = \Gamma g$, and set $\tilde{S} = gSg^{-1}$, $\tilde{\Gamma} = \Gamma \cap \tilde{S}$ and $\tilde{X} = \tilde{\Gamma} \setminus \tilde{S}$. Then $\tilde{\Gamma}$ is a *lattice* in \tilde{S} , and the map

$$J: \widetilde{X} \to X, \qquad J(\widetilde{\Gamma}\widetilde{s}) := \Gamma \widetilde{s}g \qquad (\widetilde{s} \in \widetilde{S})$$

is a C^{∞} diffeomorphism of \widetilde{X} onto xS, mapping the \widetilde{S} -invariant measure of \widetilde{X} onto ν .