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1. Review of classical Fourier analysis

Classical Fourier analysis of periodic functions with period e.g. one uses the stan-
dard exponentials

e(nx), n ∈ Z, with e(x) := e2πix.

Let f be a periodic function with period 1, i.e. f(x + 1) = f(x) for all x ∈ R. Such
a function can be considered as a function on the quotient space S1 = R/Z. Let
f ∈ L1(R/Z). We define its Fourier coefficients by

(1.1) f̂(n) =

∫ 1

0

f(x)e(−nx)dx, n ∈ Z,

where, by periodicity, we could have used any interval of length 1 for the integration.
This is spectral analysis. Spectral synthesis is interested in the inversion of this:

(1.2) f(x) =
∑
n∈Z

f̂(n)e(nx).

It is known that this result does not hold pointwise for all f ∈ L1(R/Z). However,
it is true in the L2 sense: Let f ∈ L2(R/Z). The Fourier series on the right of (1.2)
converges in the L2 sense to the function f . This means that the partial sums

fN(x) =
N∑

n=−N

f̂(n)e(nx)

satisfy:

‖fN − f‖2 → 0, N →∞.
In the language of Hilbert spaces, the set of functions e(nx), n ∈ Z is an orthonormal
basis for the space L2(R/Z) of periodic square-integrable functions on [0, 1]. This
space is actually a Hilbert space with an inner product given for two elements f and
g by

〈f, g〉 =

∫ 1

0

f(x)g(x) dx.

1
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The basic Fourier series result for Hilbert spaces can be written as

f =
∞∑

n=−∞

〈f, en〉 en,

where en is an orthonormal basis. In fact Plancherel’s theorem says that

‖f‖2 =
∑
n

|〈f, en〉|2 ,

which translates into the usual Parceval identity

‖f‖2 =
∑
n∈Z

∣∣∣f̂(n)
∣∣∣2 .

Going back to pointwise convergence, it is known that if the Fourier series in (1.2)
is absolutely convergent, then it converges to f pointwise. It follows that if f is
continuously differentiable on R/Z, then pointwise convergence holds.

It is worth noting that e(nx) satisfy the differential equation f ′′ + λf = 0 with
λ = 4π2n2. We call the operator d2/dx2 the Laplace operator on R/Z. So classical
Fourier analysis on the circle amounts to finding an orthonormal basis of L2(R/Z)
consisting of eigenfunctions of the Laplace operator. We remark that this basis is
countable and, in fact, the eigenvalue parameters 4π2n2 are a discrete set in [0,∞).

The situation changes drastically if we drop periodicity and want to do Fourier
analysis on R. One defines the Fourier transform of f ∈ L1(R) by

(1.3) f̂(ξ) =

∫
R
f(x)e(−ξx)dx, ξ ∈ R,

and Fourier inversion now takes the form of an integral (inverse Fourier transform)

(1.4) f(x) =

∫
R
f̂(ξ)e(ξx) dξ.

For later purposes it is worth mentioning that f̂(0) =
∫
R f . We notice here that

the exponentials e(nx) are not even functions in L2(R), as they have modulus 1.
Nevertheless this inversion formula is true for a dense subset of L2(R), in fact on
L1(R) ∩ L2(R). For such functions the Fourier transform is defined pointwise. Here
the Plancherel theorem takes the form

‖f‖2 =

∫
R
|f(x)|2 dx =

∫
R

∣∣∣f̂(ξ)
∣∣∣2 dξ.

We can extend the transform to all of L2(R) as a unitary operator by continuity.
We notice that the exponentials e(ξx) are also eigenfunctions of the differential

operator d2/dx2 with eigenvalue 4π2 |ξ|2, even if they are not in the Hilbert space
L2(R). However, they are ‘close’ to be in this space in the following sense. First
of all they are bounded functions. Second, we can solve the differential equation
d2f/dx2+λf = 0, and we easily see that with λ = 4π2ξ2 the solutions are f(x) = e(ξx)
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even for complex ξ. We check that if =ξ 6= 0, then e(ξx) grows exponentially either
at +∞ or at −∞. Such functions clearly are not in L2(R). When =ξ = 0, we get

the standard exponentials used in Fourier analysis, for which
∫ T
−T |e(ξx)|2 dx = 2T .

Moreover, we have a continuous set of spectral values: 4π2 |ξ|2, as ξ varies in the reals.
We notice that ξ and −ξ provide the same eigenvalue, i.e. any linear combination of
e(ξx) and e(−ξx) is an eigenfunction.

2. Description of the modular surface and its spectral
decomposition

Let Γ = SL2(Z) the group of two by two matrices with integer entries and deter-
minant 1. This acts on the hyperbolic plane H by linear fractional transformations.
The fundamental domain can be taken to be the standard fundamental domain for
SL2(Z):

D = {z ∈ H,−1

2
≤ <(z) ≤ 1

2
, |z| ≥ 1}.

We denote it by Γ\H. For background material on the hyperbolic plane H and its
geometry, look at the notes [2].

We are interested in functions on Γ\H, i.e. functions f : H→ C satisfying

f(γz) = f(z), ∀γ ∈ Γ, z ∈ H.

We are interested in the harmonic analysis on the quotient Γ\H, which is a locally
symmetric space. We work with L2(Γ\H), which is defined using the usual L2 inner
product

〈f, g〉 =

∫
Γ\H

f(z)g(z) dµ(z).

Recall from hyperbolic geometry that dµ(z) = dxdy/y2 and that the area of Γ\H is
π/3. Unfortunately for Γ\H we cannot be as explicit as we were with the Fourier
analysis on R/Z or R. The Laplace operator is of fundamental importance and is
defined by:

(2.1) ∆ = y2

(
∂2

∂x2
+

∂2

∂y2

)
.

We would like to work with the automorphic Laplacian, i.e. the self-adjoint (exten-
sion) of the differential operator ∆ on automorphic functions. Its spectral analysis
on L2(Γ\H) and, consequently, spectral synthesis, is much more complicated and ex-
hibits phenomena that appeared in both R/Z and R. There exists a discrete part
of the spectrum of the Laplacian given by L2-eigenfunctions uj, called Maaß forms,
satisfying ∆uj+λjuj(z) = 0 and an (absolutely) continuous part of the spectrum cov-
ering the interval [1/4,∞) once (since Γ has one cusp) provided by non-holomorphic
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Eisenstein series E(z, 1/2 + it) satisfying the eigenvalue equation

∆E(z, 1/2 + it) +

(
1

4
+ t2

)
E(z, 1/2 + it) = 0, t ∈ R.

The discrete part is similar to what happens on R/Z and the continuous similar to
R. Both are necessary to recover Parceval’s identity (completeness of the spectral
decomposition).

Since Γ is generated by the translation T (z) = z+1 and the inversion S(z) = −1/z
and the first maps the left vertical side of the fundamental domain to the right side,
while S maps the right arc {z : |z| = 1, x > 0} to the left arc {z : |z| = 1, x < 0}, we
can consider that the automorphy condition for the Laplace operator corresponds to
the boundary conditions that f has the same values on corresponding points of the
vertical rays and points on the arc.

There is a simple L2(Γ\H)-eigenvalue: 0, since any constant function satisfies
the eigenvalue equation with λ0 = 0. Moreover, constants are clearly Γ-invariant.
We normalize this eigenfunction to have L2-norm one, which is equivalent to taking
u0(z) = vol(Γ\H)−1/2. Let B(Γ\H) be the smooth and bounded automorphic func-
tions. We first look at the subspace of B(Γ\H) ⊂ L2(Γ\H) consisting of cuspidal
functions:

(2.2) C(Γ\H) = {f ∈ L2(Γ\H)|f smooth, bounded, f0(y) = 0}.

Here f0(y) is the zero-th Fourier coefficient of f .

Remark. Clearly ∆ maps C(Γ\H) into itself. Therefore, the same is true for its
orthogonal complement.

Theorem 2.1. The automorphic Laplace operator ∆ has pure point spectrum on
C(Γ\H) i.e. this space is spanned by cuspidal Maaß forms, which we call cusp forms or
Maaß cusp forms. For a complete orthonormal system of cusp forms uj(z), j = 1, . . .
and every f ∈ C(Γ\H) we have the expansion

f(z) =
∞∑
j=1

〈f, uj〉uj(z).

This expansion converges in the norm topology. If f ∈ B(Γ\H) has also ∆f ∈
B(Γ\H), then the series converges absolutely and uniformly on compact sets.

The fact that C(Γ\H) is infinite dimensional is by no means obvious.
The main result in the spectral decomposition of L2(Γ\H) is:

Theorem 2.2. [1, Th. 4.7, Th. 7.3] Every f ∈ L2(Γ\H) has the expansion

(2.3) f(z) =
∞∑
j=0

〈f, uj〉uj(z) +
1

4π

∫
R
〈f, E(·, 1/2 + it)〉E(z, 1/2 + it) dt.
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The convergence holds in the norm topology, and, if, additionally, f and ∆f are
smooth and bounded, then the expansion (2.3) converges pointwise, absolutely and
uniformly on compact sets of Γ\H.

For the definition and properties of Eisenstein series, see the discussion below.
We also need the space E(Γ\H) of incomplete Eisenstein series. Let ψ be a com-

pactly supported function on (0,∞) (more generally one can take functions which
are rapidly decaying at 0 and infinity: i.e. for every positive integer N , we have
ψ(y) = ON(yN), as y → 0 and ψ(y) = ON(y−N), as y → ∞. We define the incom-
plete Eisenstein series (occasionally but wrongly called incomplete theta series)

E(ψ, s) =
∑
γ∈Γ∞\Γ

ψ(=(γz)).

For ψ compactly supported on (0,∞), E(ψ, z) is bounded and automorphic.
For ψ(y) = ys we get the Eisenstein series (notice that the conditions for ψ are not

satisfied):

(2.4) E(z, s) =
∑

γ∈Γ∞\Γ

=(γz)s.

Here Γ = PSL2(Z) and Γ∞ is the cyclic subgroup generated by T : z 7→ z + 1. This
series converges absolutely and locally uniformly for σ = <(s) > 1. The Eisenstein
series E(z, s) admits a Fourier expansion of the cusp i∞, see e.g. [1, (3.25)]

E(z, s) =
∑
n∈Z

an(y, s)e2πinx

= ys + φ(s)y1−s +
2y1/2

ξ(2s)

∑
n 6=0

|n|s−1/2 σ1−2s(|n|)Ks−1/2(2π |n| y)e2πinx.(2.5)

Here ξ(s) = π−s/2Γ(s/2)ζ(s) is the completed Riemann zeta function satisfying the
functional equation ξ(s) = ξ(1− s), σc(n) is the sum of the cth powers of the divisors
of n, and Ks(y) is the K-Bessel function. The scattering matrix is

(2.6) φ(s) =
ξ(2− 2s)

ξ(2s)
.

The Fourier series converges for z ∈ H due to the rapid decay of the K-Bessel
functions, see [1, B.36]. Therefore, E(z, s) is a holomorphic function of s away from
the poles of φ(s) and zeros of ξ(2s). Zeros of ξ(2s) occur at ρ/2, where ρ are the non-
trivial zeros of the Riemann zeta function. So RH is equivalent with the statement
that the poles of E(z, s) in <(s) < 1/2 have real part 1/4. It is doubtful this will help
with proving RH. But it is a spectral interpretation of the Riemann zeros. Writing
ξ(2 − 2s) = ξ(2s − 1) we also see that the zero Fourier coefficient of E(z, s) has a
pole at s = 1 corresponding to the pole of ζ(s) at s = 1. Notice that if E(z, s) is
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holomorphic at a point s, then all its Fourier coefficients are as well. This provides
the meromorphic continuation of E(z, s) in the whole complex plane.

The Eisenstein series satisfies the functional equation E(z, s) = φ(s)E(z, 1 − s).
This is seen by matching the Fourier coefficients of φ(s)E(z, 1 − s) with those of
E(z, s). There are only two observations needed: for each natural number a we have

a1/2−sσ2s−1(a) = as−1/2σ1−2σ(a)

and

Kν(y) =

∫ ∞
0

e−y cosh t cosh(νt)dt = K−ν(y),

see [1, p.205].
The incomplete Eisenstein series rarely is an eigenfunction of ∆. It is important

that we express it as a contour integral of the Eisenstein series

E(ψ, z) =
1

2πi

∫
(σ)

E(z, s)ψ̂(s) ds,

where σ > 1 and

ψ̂(s) =

∫ ∞
0

ψ(y)y−s−1dy

is the Mellin transform of ψ. This is an easy application of the inversion of Mellin
transform:

ψ(y) =
1

2πi

∫
(σ)

ψ̂(s)ysds.

All we have to do is plug y = =(γz) and sum over γ ∈ Γ∞\Γ. The interchange of the
summation and integration is obvious, since for σ > 1 the series for E(z, s) converges
absolutely. We also need to notice that the assumptions on ψ imply by repeated
integration by parts that ψ̂(s) = OA((1 + |s|)−A) for all A > 0.

Remark. This is not the standard normalisation of Mellin transform (usually one
uses +s in the transform and −s in the inverse.

Theorem 2.3. The orthogonal complement of E(Γ\H) in L2(Γ\H) is the closure of
C(Γ\H) in L2(Γ\H). This gives the decomposition

L2(Γ\H) = C(Γ\H)⊕ E(Γ\H),

where overline denotes the closure in the Hilbert space L2(Γ\H).

Proof. Let f be automorphic and integrable over Γ\H. Then f(x+1+iy) = f(x+iy),
which allows to expand f in Fourier series in x:

f(z) = f0(y) +
∑
n 6=0

fn(y)e(nx).



NOTES ON QUE 7

Let us assume moreover that f is perpendicular to E(Γ\H). Let E(ψ, z) be an
incomplete Eisenstein series. Then we get

0 = 〈f, E(ψ, z)〉 = 〈f,
∑

γ∈Γ∞\Γ

ψ(=(γz))〉 =

∫
Γ\H

f(z)
∑

γ∈Γ∞\Γ

ψ(=(γz) dµ(z).

We unfold (à la Rankin–Selberg): setting z′ = γz we change variables, noticing that
the hyperbolic measure is invariant for γ ∈ PSL2(Z), and observe that as γ runs
over the cosets Γ∞\Γ (and we take appropriate representatives of the cosets) the sets
γ−1D cover the strip {z ∈ H : 0 < x < 1}, which is the fundamental domain of the
infinite cyclic group Γ∞ to get∑

γ∈Γ∞\Γ

∫
γ−1Γ\H

f(z)ψ(=z)dµ(z) =

∫
Γ∞\H

f(z)ψ(=z)dµ(z)

=

∫ ∞
0

(∫ 1

0

f(z)dx

)
ψ(y)y−2dy =

∫ ∞
0

f0(y)ψ(y)y−2dy.

This implies that f0(y) = 0 i.e. f ∈ C(Γ\H). �

Remark. The unfolding à la Rankin–Selberg appear often. It concerns the inner
product of an automorphic form, here f(z), and a series over Γ∞\Γ. It is also a
general fact that if Γ1 ⊂ Γ2 are subgroups, and D2 is a fundamental domain of Γ2,
then a fundamental domain of Γ1 can be taken to be D1 = ∪γ∈Γ1\Γ2gD2.

The spectral analysis on the continuous spectrum uses a transform, called the
Eisenstein transform. It intertwines the Laplace operator on a subspace of E(Γ\H)
with a multiplication operator M on C∞0 (R+). The Eisenstein transform maps func-
tions in C∞0 (R+) to L2(Γ\H) by

E(f)(z) =
1

4π

∫ ∞
0

f(r)E(z, 1/2 + ir)dr.

This is an isometric map, if we equip L2(R+) with the inner product 〈f, g〉 =

(2π)−1
∫∞

0
f(r)g(r)dr. The fact that this is an isometry is not obvious at all! For a

proof look at [1, Prop. 7.1], where the Maaß–Selberg relations are used, which give
the asymptotic inner-product of Eisenstein series with itself. The image of the map
is called E∞(Γ\H).

If we define Mf(r) = −(r2 + 1/4)f(r), then ∆E(f) = E(Mf). The spectral
theorem in the continuous spectrum can now be stated as follows:

Theorem 2.4. We have the orthogonal splitting

E(Γ\H) = R(Γ\H)⊕ E∞(Γ\H),

where R(Γ\H) is the one dimensional space of constants. The spectrum of ∆ on
E∞(Γ\H) is absolutely continuous and covers the interval [1/4,∞) with multiplicity
1.
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Remark. The space R∞(Γ\H) is the space of residues of Eisenstein series in the
interval (1/2, 1]. Here there is only one: the constant function. In general this is a
finite dimensional space. For the modular group Γ we can see that there is no other
pole of E(z, s) in the interval (1/2, 1], since ξ(2s− 1) has only pole at s = 1 and the
denominator ξ(2s) of φ(s) has no zeros in this interval, due to the non-vanishing of
ζ(s) in the domain of absolute convergence σ > 1. This is due to the Euler product.
It is also known and can be proved using the Rayleigh quotient that there are no
Maaß cusp forms with eigenvalue less than 1/4 for this group. Selberg’s eigenvalue
conjecture says that λ1 ≥ 1/4 for all congruence groups.

Remark. It is customary in the field to write the eigenvalue equation as ∆u+ s(1−
s)u = 0. The map λ = s(1−s) is creating a double cover of the λ-plane. The ‘physical
plane’ λ is opened up along the ray [0,∞), where the spectrum of −∆ should be and
corresponds to the right half-plane <(s) ≥ 1/2. The left half-plane <(s) < 1/2 is
where analytic continuations have to be worked out and poles of E(z, s) in it are
called scattering poles or resonances.

With this normalisation s0 = 1 corresponds to λ0 = 0. The continuous spectrum
[1/4,∞) corresponds to the critical line <(s) = 1/2. The small eigenvalues λj <
1/4 correspond to real sj ∈ (1/2, 1]. The Maaß cusp forms for the modular group
correspond to points sj and their conjugate on the critical line. They are mysterious
and may remind us of Riemann zeros. There are two fundamental differences: RH is
not known to be true, while it is known for the spectral parameters sj that <(sj) =
1/2. Moreover, unlike the counting of Riemann zeros (von Mangoldt formula), Weyl’s
law (hard to prove) says that

N(T ) = |{sj : 0 < =(sj) ≤ T}| ∼ Area(Γ\H)

4π
T 2.
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