2. Lecture 2: (Metric) Diophantine Approximation

Problem 8. Minkowski's Convex Body Theorem. Prove that if C is a closed symmetric⁶ convex body in \mathbb{R}^d with $\operatorname{vol}(C) \geq 2^d$, then there exists a non-zero vector in $\mathbb{Z}^d \cap C$.

Hint: First assume $\operatorname{vol}(C) > 2^d$. Then an asymptotic packing/volume argument implies that the translated bodies $m + \frac{1}{2}C$ with m running through \mathbb{Z}^d cannot be pairwise disjoint; i.e. there exist $m \neq m'$ in \mathbb{Z}^d such that $(m + \frac{1}{2}C) \cap (m' + \frac{1}{2}C) \neq \emptyset$. This is easily seen to imply the existence of a non-zero vector in $\mathbb{Z}^d \cap C$. Finally if $\operatorname{vol}(C) \geq 2^d$, apply the previous result to the body tC for t > 1, and let $t \to 1$.

Problem 9. For d = 1, prove that $x \in \mathbb{R}$ is singular if and only if x is rational.

Problem 10. (a) Prove the following more general version of Dirichlet's Theorem ("DT for *m* linear forms in *n* variables"): For every $X \in M_{n,m}(\mathbb{R})$ and Q > 1, there exist $(\boldsymbol{p}, \boldsymbol{q}) \in \mathbb{Z}^m \times (\mathbb{Z}^n \setminus \{\mathbf{0}\})$ satisfying

$$\|\boldsymbol{q}X - \boldsymbol{p}\| \le Q^{-\frac{1}{m}}$$
 and $\|\boldsymbol{q}\| \le Q^{\frac{1}{n}}$.

(b) From the result in (a), give a natural definition of what it means for $X \in M_{n,m}(\mathbb{R})$ to be *badly approximable* and *singular*, respectively. Now prove that if we write

$$u(X) := \begin{pmatrix} I_m & 0\\ X & I_n \end{pmatrix}$$
 and $L_X := \mathbb{Z}^{m+n} u(X) \in X_{m+n}$

and consider the following diagonal flow on X_{m+n} :

$$a_t = \begin{pmatrix} e^{nt}I_m & 0\\ 0 & e^{-mt}I_n \end{pmatrix} \qquad (t \in \mathbb{R}),$$

then we have: $X \in M_{n,m}(\mathbb{R})$ is badly approximable iff the orbit $\{L_X a_t\}_{t\geq 0}$ in X_{m+n} is bounded. $X \in M_{n,m}(\mathbb{R})$ is singular iff the orbit $\{L_X a_t\}_{t\geq 0}$ in X_{m+n} is divergent.

⁶symmetric means: C = -C.