
PROBLEMS (HOMOGENEOUS DYNAMICS AND NUMBER

THEORY)

1. Problems for Lecture 1 (Diagonal and unipotent flows)

Problem 1. Identification of PSL2(R) and the unit tangent bundle of H;
[7, pp. 8–9, Exercises 10–11].

Let H = {x + iy ∈ C : y > 0} be the hyperbolic upper half plane (or
simply hyperbolic plane), with Riemannian metric 〈v,w〉 := y−1v ·w for any
v,w ∈ Tx+iy(H), where v ·w is the usual Euclidean inner product on R2 ∼= C.
(a) Show that the formula

g(z) =
az + b

cz + d
for z ∈ H and g =

(
a b
c d

)
∈ SL2(R)

defines an action of SL2(R) by isometries on H, and show that this action
is transitive.

(b) The unit tangent bundle T 1H consists of the tangent vectors of length
1. By differentiation we obtain an action of SL2(R) on T 1H. Prove that
this action is transitive. Prove also that the stabilizer of any fixed vector
v ∈ T 1H equals {±I}. Note that if we make a choice of a fixed ’base vector’
v0 ∈ T 1H, then it follows that the map g 7→ g(v0), SL2(R) → T 1H induces
an identification of the Lie group PSL2(R) := SL2(R)/{±I} with T 1H. The
standard choice is to let v0 be the upward unit vector at the point i ∈ H.

(c) It is well-known that the geodesics in H are semicircles (or lines) that are
orthogonal to the real axis. Any v ∈ T 1H is tangent to a unique geodesic
Gv. The geodesic flow on T 1H moves any v ∈ T 1H a distance t along the
geodesic Gv . Prove that under the identification in part (b) above, with the
standard choice of v0, the geodesic flow corresponds to the flow

g 7→ g

(
et/2 0

0 e−t/2

)
on PSL2(R).

(d) The horocycles in H are the circles that are tangent to the real axis
(and the lines that are parallel to the real axis). Each v ∈ T 1H is an inward
normal vector to a unique horocycle Hv. The horocycle flow on T 1H moves
any v ∈ T 1H a distance t (counterclockwise, for t > 0) along Hv. Prove
that under the identification in part (b) above, with the standard choice of
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v0, the horocycle flow corresponds to the flow

g 7→ g

(
1 t
0 1

)
on PSL2(R).

(e) Let X be any compact, connected surface of constant negative curvature
−1. It is known that there exists a covering map ρ : H → X that is a local
isometry. Let

G = SL2(R) and Γ = {γ ∈ SL2(R) : ρ ◦ γ ≡ ρ}.
Prove that Γ is a discrete subgroup of G and that Γ\G is compact. We have

−I ∈ Γ; hence there is a natural identification Γ\G = Γ̃\PSL2(R) where Γ̃
is the image of Γ in PSL2(R). Prove also that the unit tangent bundle T 1X
can be identified with Γ\G in such a way that the geodesic flow on T 1X
corresponds to the flow

Γg 7→ Γg

(
et/2 0

0 e−t/2

)

on Γ\G, and the horocycle flow on T 1X corresponds to the flow

Γg 7→ Γg

(
1 t
0 1

)

on Γ\G.
Problem 2. Basics about homogeneous spaces Γ\G

Let G be a Lie group1 let Γ be a discrete subgroup of G, set X = Γ\G,
and let π : G → X be the projection map; π(g) = Γg. Let µ be a left Haar
measure on G. Let F ⊂ G be a Borel set which is a fundamental domain

for Γ\G (that is, G =
⋃

γ∈Γ
γF and γF ∩ γ′F = ∅ for any two γ 6= γ′ in Γ). 2

(a) Prove that we obtain a Borel measure µX on X by setting µX(E) :=
µ(π−1(E) ∩ F ) for every Borel subset E ⊂ X.

(b) Prove that µX is independent of the choice of F .

(c) Prove that µ can be expressed in terms of µX by the formula
∫

G
f dµ =

∫

X

∑

g∈π−1(x)

f(g) dµX(x), ∀f ∈ L1(G,µ).

In particular µ(E) =
∫
X #(π−1(x) ∩ E) dµX(x) for every Borel set E ⊂ G.

(d) Prove that if µX(X) <∞ then µ is right invariant, viz., G is unimodular.

1Or more generally, let G be a second countable locally compact group.
2It is an interesting exercise to prove that such a set F always exists.
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Problem 3. Sobolev norms on X = Γ\G; (very) basic properties.
(See, e.g., [10, Sec. 2.9.1].)

Let Γ be a lattice in a Lie group G, and let X = Γ\G, and let µ be the
G-invariant probability measure on X (as usual). Let g be the Lie algebra
of G, and fix a linear basis B of g. For k ∈ Z≥0, f ∈ Ck(X) and 1 ≤ p ≤ ∞,
put

Sp,k(f) =
∑

ord(D)≤k

‖Df‖Lp ,

where D runs through all monomials in B of order ≤ k, and D acts on f
by right differentiation (so that, in particular, Y f(g) = d

dtf(g exp(tY ))
∣∣
t=0

for any Y ∈ B); furthermore, ‖F‖Lp :=
(∫

X |F |p dµ
)1/p

for any F : X → C.
Note that we may have Sp,k(f) = +∞.

(a). Prove that changing B only distorts Sp,k by a bounded factor. That
is, if S′

p,k is the norm obtained by replacing B by another basis, then there

exist constants 0 < c1 < c2 (which may depend on k) such that

c1Sp,k(f) ≤ S′
p,k(f) ≤ c2Sp,k(f) for all f ∈ Ck(X).

(b). For g ∈ G and f ∈ Ck(X), define Tgf ∈ Ck(X) through [Tgf ](x) =
f(xg) (x ∈ X). Prove that for every compact subset F ⊂ G, there exists a
constant C = C(F, k) > 0, such that

Sp,k(Tgf) ≤ C · Sp,k(f), ∀f ∈ Ck(X), g ∈ F.
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Problem 4. Polynomial versus exponential divergence. Let Γ be a lattice
in a Lie group G. Recall that for any one-parameter subgroup (ht) of G we
have h−1

t (expX)ht = exp
(
Adh−t(X)

)
for all t ∈ R and X ∈ g, and hence

Γg(expX)ht = Γght exp
(
Adh−t(X)

)
(∀g ∈ G, X ∈ g, t ∈ R).

(a) Prove that if (ht) is unipotent (
def⇔ Adht is unipotent, ∀t), then there

is a linear basis b1, . . . , bn for g (n = dimG = dim g) and a strictly upper
triangular matrix U ∈Mn(R) such that

Adht = etU , ∀t ∈ R,

in the basis b1, . . . , bn. Note also that the matrix etU has the form (pi,j(t))i,j=1,...,n

where pi,j(t) ≡ 0 for all 1 ≤ j < i ≤ n, pi,i(t) ≡ 1 for all 1 ≤ i ≤ n, and
pi,j(t) is a polynomial of degree ≤ j − i for all 1 ≤ i < j ≤ n.

(b) Prove that if (ht) is diagonal (
def⇔ Adht is diagonalizable over R, ∀t), then

there is a linear basis b1, . . . , bn for g (n = dimG = dim g) and constants
c1, . . . , cn ∈ R

Adht = diag[ec1t, · · · , ecnt], ∀t ∈ R,
in the basis b1, . . . , bn.

Hint for (a) and (b): Having fixed a basis of g, we have that t 7→ Adht is a one-parameter

subgroup of GLn(R); hence there exists a matrix A ∈Mn(R) such that Adht = etA, ∀t ∈ R.
The task is to prove that the basis of g can be chosen so that A is upper triangular (in

(a)), resp., diagonal (in (b)). One approach is to consider the Jordan normal form of A

(apriori this requires passing to Cn).

(c) Assume that X is compact.3 Use (a) to prove that there exists an upper
bound on the possible polynomial rate of mixing of the unipotent flow (ht)
on X. Namely: Given ℓ ∈ Z+, there exists a constant dmax (which only
depends on ℓ and the dimension of G) such that if C and d are any real
positive constants with the property that∣∣∣∣
∫

X
f1(xht)f2(x) dµ(x)− µ(f1)µ(f2)

∣∣∣∣ ≤ C · S2,ℓ(f1) · S2,ℓ(f2) · t−d,

∀f1, f2 ∈ C∞(X), t ≥ 1,

then d ≤ dmax.

3Can you get rid of this assumption?
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Problem 5. Equidistribution of an expanding horocycles; proof using Mar-
gulis’ thickening technique.

Let G = SL2(R), let Γ be a lattice in G and set X = Γ\G. Following the
outline in the lecture, prove that for any p0 ∈ X and f ∈ Cc(X),

∫ 1

0
f(p0usat) ds → µ(f) as t → −∞.(1)

Hint: Things become technically easier if we don’t define f1 literally as in the lecture,

but instead lift the horocycle to G = SL2(R) and consider an ε-neighbourhood there.

Thus: Fix some g0 ∈ G so that p0 = Γg0, and for ε > 0 small, define the function f̃1 :

G → {0, 1} by f̃1(g) = χI(x)χε(y)χε(z) if g = g0ux ay ũz and f̃1(g) = 0 if g /∈ g0G+; this

function f̃1 is clearly the characteristic function of an “ε-neighbourhood” of the horocycle

{g0us : s ∈ [0, 1]} in G. Finally define f1 : X → Z≥0 through f1(p) =
∑
g∈π−1(p) f̃1(g)

(p ∈ X), where π : G → X = Γ\G is the standard projection. Now by “unfolding” we

have
∫
X
f1(xa−t)f2(x) dµ(x) =

∫
X
f1(x)f2(xat) dµ(x) =

∫
G
f̃1(g)f2(gat) dµ(g), which can

be analyzed further using the explicit definition of f̃1.

Problem 6. “Ratner ⇒ Weyl equidistribution”

Let X be the torus X = Rn/Zn (or “Zn\Rn”, if you prefer), let v ∈ Rn,
and let Φt be the following flow on X:

Φt(x) = x+ tv (x ∈ Rn/Zn, t ∈ R).
Verify that Ratner’s Theorem implies, as a very special case, the following
fact: If ν is a Φt-invariant ergodic Borel probability measure on X, then
there exists a point x ∈ X and a linear subspace V ⊂ Rn such that v ∈ V
and V ∩Zn contains a basis of V 4, the closure of the orbit {Φt(x) : t ∈ R} in
X equals x+XV where XV := V/(V ∩Zn), and ν is the unique V -invariant
probability measure on x+XV .

(Of course, you may also like to verify the above statement in a more ele-
mentary way, e.g. using Fourier analysis. You may like to focus in particular
on the case when v is such that v · m 6= 0 5 for all m ∈ Zn; then V = Rn

and XV = X, so that the conclusion is that the flow Φt is uniquely ergodic.)

4When this holds, one says that V is a rational linear subspace of Rn; note that it
implies that V ∩ Zn is a lattice in V (of rank = dimV ), and thus XV := V/(V ∩ Zn) is a
torus, namely a subtorus of Rn/Zn of dimension dimV .

5Here “·” denotes the standard scalar product in Rn, viz., v ·m =
∑n
j=1 vjmj .
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Problem 7. Interpreting the statement of Ratner’s Theorem in another
(very) special case.

Prove that in the special case G = SL2(R), Γ = SL2(Z) and ut = ( 1 t
0 1 ),

Ratner’s Theorem implies that if ν ∈ P (X) is Φt-invariant and ergodic then
either ν = µX (the unique G-invariant probability measure on X) or ν = λy
for some y > 0, where λy is the uniform probability measure along “the
closed horocycle at height y”, that is,

λy(f) =

∫ 1

0
f

((
1 x
0 1

)(√
y 0
0 1/

√
y

))
dx (∀f ∈ Cc(X)).

(This fact was first proved by Dani, 1978.)


